
Agilent E5070B/E5071B ENA Series RF Network Analyzers

Read or Write Trace Data
Second Edition
No. 16000-95017
August 2002

Notices
The information contained in this document is subject to change without notice.

This document contains proprietary information that is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced, or translated to
another language without the prior written consent of Agilent Technologies.

Agilent Technologies Japan, Ltd.

Component Test PGU-Kobe

1-3-2, Murotani, Nishi-ku, Kobe, Hyogo, 651-2241 Japan

MS-DOS , Windows , Windows 98, Windows NT , Visual C++ , Visual Basic ,
VBA, Excel and PowerPoint are U.S. registered trademarks of Microsoft Corporation.

Portions Copyright 1996, Microsoft Corporation. All rights reserved.

© Copyright Agilent Technologies Japan, Ltd. 2002

Sample Program
The customer shall have the personal, non-transferable rights to use, copy, or modify
SAMPLE PROGRAMS in this manual for the customer’s internal operations. The
customer shall use the SAMPLE PROGRAMS solely and exclusively for their own
purposes and shall not license, lease, market, or distribute the SAMPLE PROGRAMS or
modification of any part thereof.

Agilent Technologies shall not be liable for the quality, performance, or behavior of the
SAMPLE PROGRAMS. Agilent Technologies especially disclaims any responsibility for
the operation of the SAMPLE PROGRAMS to be uninterrupted or error-free. The
SAMPLE PROGRAMS are provided AS IS.

AGILENT TECHNOLOGIES DISCLAIMS ANY IMPLIED WARRANTY OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Agilent Technologies shall not be liable for any infringement of any patent, trademark,
copyright, or other proprietary right by the SAMPLE PROGRAMS or their use. Agilent
Technologies does not warrant that the SAMPLE PROGRAMS are free from
infringements of such rights of third parties. However, Agilent Technologies will not
knowingly infringe or deliver software that infringes the patent, trademark, copyright, or
other proprietary right of a third party.

Read or Write Trace Data
Reading/Writing Measurement Data
This section describes how to process the E5070B/E5071B's internal data. You can use
these internal data arrays: corrected data arrays, corrected memory arrays, formatted data
arrays, formatted memory arrays, and stimulus data arrays. For more information on the
internal data arrays, see Section "Internal Data Processing" in E5070B/E5071B
Programmer's Guide.

To read/write a formatted data array or formatted memory array, use the following objects:

• SCPI.CALCulate(Ch).SELected.DATA.FDATa

• SCPI.CALCulate(Ch).SELected.DATA.FMEMory

To read a corrected data array, corrected memory array, or stimulus data array, use the
following objects:

• SCPI.CALCulate(Ch).SELected.DATA.SDATa

• SCPI.CALCulate(Ch).SELected.DATA.SMEMory

• SCPI.SENSe(Ch).FREQuency.DATA

The E5070B/E5071B VBA allows you to deal with multiple pieces of data through
variables of Variant type. Variant variables can contain any type of data, allowing you to
deal with array data without being aware of the number of elements. For example, a
formatted data array that includes 5 measurement points is stored as shown in Figure 1.
Note that a formatted data array always contains 2 data items per measurement point,
whichever data format is used. For more information on contained data, see Section
"Internal Data Processing" in E5070B/E5071B Programmer's Guide; you can find a table
that describes the relationship between contained data items and data formats.

Figure 1 Example storing data into a Variant variable

NOTE When you use one of the objects listed above, the base index number of the array is always
0 even if the declaration section contains the "Option Base 1" statement, which specifies
the use of the base array index of 1.

For example, you may wish to read the formatted data array for a particular trace in its
entirety (including all measurement points), display the data in the echo window, and then
write the data into another trace. How to implement such a process can be better
understood with the aid of a sample program.

The sample program disk contains a sample program, named "read_write.vba", that
demonstrates how to read and write measurement data. This VBA program consists of the
following modules:

When you run this VBA program, a window as shown in Figure 2 appears. For how to use
each element in Figure 2, see the following description.

Object name Module type Content

frmReadWrite UserForm Reads, displays, and writes a formatted data array.

mdlReadWrite Standard module Invokes a UserForm.

4. C
ontrolling the

E5070A/E5071A
Figure 2 The UserForm when running the Example 1 program

1. The program lets the user specify the channel to be controlled.

2. The program lets the user specify which trace's formatted data array to read (source
trace).

3. The program reads the formatted data array for the trace specified by the user, display
the measurement results in the echo window, and write the data into the trace specified
by the user. For detail, see the description of the code window.

4. The program lets the user specify which trace's formatted data array to overwrite (target
trace).

5. The program exits, and the window disappears.

In Visual Basic Editor, open the UserForm (object name: frmReadWrite), and double-click
the entire UserForm or the Copy -> or Exit button to bring up the code window. The
following is the description of the subprograms associated with the respective buttons.

Procedure called when the user clicks the Copy button on the UserForm (lines 10 to 520)

Lines 90 to 160 These lines identify the selected items in each list and store them into
the variables TrGet, TrPut, and ActCh.

Lines 180 to 210 If the specified target trace is not displayed, these lines display that
trace.

Lines 230 to 250 These lines make active the specified trace (TrGet: source trace) in the
specified channel(ActCh) and hold the sweep.

Line 260 Reads the number of measurement points for the specified channel
(ActCh) and stores that number into the Nop variable.

Line 280 Reads the formatted data array for the active trace (source trace) and
store the data into the FmtData variable.

Line 290 Reads the stimulus array for the specified channel (ActCh) and stores
the data into the Freq variable.

Line 330 Reads the data format for the active trace (source trace) and store it
into the Fmt variable.

Lines 340 to 350 These lines display the echo window in the lower part of the LCD
screen.

Lines 360 to 470 The lines display, in the echo window, each point along with one
measured value (the odd part of the index is always 0) and a frequency
if the Fmt is "MLOG", "PHAS", "GDEL", "MLIN", "SWR", "REAL",
"IMAG", or "UPH"; or along with two measured values and a
frequency if Fmt$ returns any other string.

Line 490 Makes active the specified trace (TrPut: target trace) in the specified
channel(ActCh).

Line 500 Writes the formatted data array (FmtData) into the active trace (target
trace).

Procedure called when the user clicks the Exit button on the UserForm (lines 540 to 580)

Line 560 Unloads the UserForm from the memory, and terminates the program.

Procedure that initializes the UserForm (lines 600 to 1020)

Lines 620 to 1000 When the program is launched, these lines add each list item and set
the default value for each list.

Example 1 Reading/displaying/writing a formatted data array (read_write.frm)

 10| Private Sub cmdCopy_Click()
 20|
 30| Dim X As Integer, Y As Integer, Z As Integer, I As Integer
 40| Dim ActCh As Long, TrGet As Long, TrPut As Long
 50| Dim TrCont As Long, Nop As Long
 60| Dim FmtData As Variant, Freq As Variant
 70| Dim Fmt As String
 80|
 90| X = cboCh.ListIndex

4. C
ontrolling the

E5070A/E5071A
 100| ActCh = X + 1
 110|
 120| Y = cboGet.ListIndex
 130| TrGet = Y + 1
 140|
 150| Z = cboPut.ListIndex
 160| TrPut = Z + 1
 170|
 180| TrCont = SCPI.CALCulate(ActCh).PARameter.Count
 190| If TrCont < TrPut Then
 200| SCPI.CALCulate(ActCh).PARameter.Count = TrPut
 210| End If
 220|
 230| SCPI.CALCulate(ActCh).PARameter(TrGet).SELect
 240| SCPI.INITiate(ActCh).CONTinuous = False
 250| SCPI.ABORt
 260| Nop = SCPI.SENSe(ActCh).SWEep.POINts
 270|
 280| FmtData = SCPI.CALCulate(ActCh).SELected.Data.FDATa
 290| Freq = SCPI.SENSe(ActCh).FREQuency.Data
 300|
 310| '''Displays the formatted data
 320|
 330| Fmt = SCPI.CALCulate(ActCh).SELected.Format
 340| SCPI.DISPlay.TABLe.TYPE = "ECHO"
 350| SCPI.DISPlay.TABLe.STATe = True
 360| Select Case Fmt
 370| Case "MLOG", "PHAS", "GDEL", "MLIN", "SWR", "REAL",
"IMAG", "UPH"
 380| ECHO "Nop", "Frequency(GHz)", "Data"
 390| For I = 0 To Nop - 1
 400| ECHO I + 1, Freq(I) / 1000000000#, FmtData(2 * I)
 410| Next I
 420| Case Else
 430| ECHO "Nop", "Frequency(GHz)", "Data1", "Data2"
 440| For I = 0 To Nop - 1
 450| ECHO I + 1, Freq(I) / 1000000000#, FmtData(2 * I),
FmtData(2 * I + 1)
 460| Next I
 470| End Select
 480|
 490| SCPI.CALCulate(ActCh).PARameter(TrPut).SELect
 500| SCPI.CALCulate(ActCh).SELected.Data.FDATa = FmtData
 510|
 520| End Sub
 530|
 540| Private Sub cmdExit_Click()
 550|
 560| Unload Me
 570|
 580| End Sub
 590|
 600| Private Sub UserForm_Initialize()
 610|
 620| With cboCh
 630| .AddItem "CH1"
 640| .AddItem "CH2"
 650| .AddItem "CH3"

 660| .AddItem "CH4"
 670| .AddItem "CH5"
 680| .AddItem "CH6"
 690| .AddItem "CH7"
 700| .AddItem "CH8"
 710| .AddItem "CH9"
 720| End With
 730|
 740| With cboGet
 750| .AddItem "Trace 1"
 760| .AddItem "Trace 2"
 770| .AddItem "Trace 3"
 780| .AddItem "Trace 4"
 790| .AddItem "Trace 5"
 800| .AddItem "Trace 6"
 810| .AddItem "Trace 7"
 820| .AddItem "Trace 8"
 830| .AddItem "Trace 9"
 840| End With
 850|
 860| With cboPut
 870| .AddItem "Trace 1"
 880| .AddItem "Trace 2"
 890| .AddItem "Trace 3"
 900| .AddItem "Trace 4"
 910| .AddItem "Trace 5"
 920| .AddItem "Trace 6"
 930| .AddItem "Trace 7"
 940| .AddItem "Trace 8"
 950| .AddItem "Trace 9"
 960| End With
 970|
 980| cboCh.ListIndex = 0
 990| cboGet.ListIndex = 0
1000| cboPut.ListIndex = 0
1010|
1020| End Sub

	read_write.pdf
	� Read or Write Trace Data
	Reading/Writing Measurement Data
	Figure 1 Example storing data into a Variant variable
	<表>
	Figure 2 The UserForm when running the

